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Circuit Hardware and Circuit Diagram
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2.1 Circuit Terminology

In this chapter, we will discuss fundamental laws of circuit theory. 
Some definitions of graph are introduced first.

Lumped parameter circuit:

(1) a circuit with physical dimensions small compared to the 
signal wavelength.

(2) the circuit is modeled as an interconnection of concentrated 
elements (resistors, capacitors, and inductors, etc.) joined by a 
network of perfectly conducting wires. The circuit elements have 
idealized lumped parameters (resistance, capacitance, inductance, 
etc.).
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Circuit Terminology

Node: an electrical joint connecting the terminals of two or more 
circuit elements.

Branch: consists of two nodes between which a circuit elements is 
inserted.

Path: a sequence of nodes proceeding from the starting node 
to the ending node.

Loop: a closed path with the starting node the same as the 
ending node without passing an intermediate node more 
than once.

Mesh: a loop that does not contain any other loops within it.
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Circuit Diagram

Node A

Node B

Node C

Node D

Node E

Node F

Node G

wire, no element, 
only one node

no connection

+ V1 –

+
V4

–

+ V3 –

+ V2 –

+
V5

–

+
V8

–

+
V9

–

+
V7

–

+
V6

–

I9

VS1

IS3VS2

branch voltage

branch current

source current

Circuit diagram: a graphical representation of a circuit (closed 
connections of circuit elements).

7 nodes
9 branches

source voltage

node

no connection
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Examples 2-1, 2-2

Example 2-2: How many loops and meshes are there in the circuit 
diagram?

Soln: 3 loops and 2 meshes.

Example 2-1: How many nodes and branches are there in the 
circuit diagram on the right?

Soln: 2 nodes and 5 branches: 
5 elements in parallel.

L1 L2

L3
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2.2.1 Kirchhoff's Current Law

Kirchhoff's Current Law (KCL):

At any instant of time, the algebraic sum of 
the currents entering (or leaving) a node of 
a circuit is equal to 0, i.e., 𝐼𝑖 = 0.

I4

I3
I2

I1

I5

Consider currents entering Node A:

 I1 – I2 + I3 – I4 + I5 = 0

N.B. I2 and I4 bear minus signs because they are leaving A.

Example 2-3:

A
Gustav Robert Kirchhoff

(1824-1887)
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Current In = Current Out

KCL is more conveniently stated as:

𝐼𝑖 = 𝐼𝑘

where Ij's and Ik's are currents entering and leaving the node, 
respectively.

KCL is a consequence of conservation of charge: charge entering 
a node must leave that node instantaneously, and there is no 
charge accumulation at the node.

𝑞𝑖 = 0  
𝑑𝑞

𝑖

𝑑𝑡
= 0  𝐼𝑖 = 0

Example 2-4:

I4

I3
I2

I1

I5

A

I1 + I3 + I5 = I2 + I4



Under this assumption:
𝐼1 = 𝐼2 = 𝐼3 = 𝐼4 = 𝐼5 = 𝐼6 2-11

Additional Assumption for KCL

𝑑𝑞1
𝑑𝑡

= 0

𝑑𝑞5
𝑑𝑡

= 0

𝑑𝑞4
𝑑𝑡

= 0

𝑑𝑞3
𝑑𝑡

= 0

𝑑𝑞2
𝑑𝑡

= 0

𝑑𝑞6
𝑑𝑡

= 0

𝐼1

𝐼2

𝐼3 𝐼4

𝐼5

𝐼6

No change of net charge within any circuit elements.
In general a good assumption.

Here 𝑞𝑖 is the net charge inside the 𝑖th

circuit element. This is different from the 
earlier definition in which 𝑞𝑖 was the 

charge that moved through a given 
plane.
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Examples 2-5, 2-6

Example 2-5:

B
A

C

E

DI1

I2

I3

I4 I6

I5

I7

Node A: I1 + I2 = 0

Node B: I2 = I3 + I5

Node C: I3 = I4 + I7

Node D: I5 + I7 = I6

Node E: I1 + I4 + I6 = 0

Example 2-6: Find I6.

Soln.:
I1 = I6 + I8

 I6 = 7 A

A

R1

R4

I1=5 A I8=–2 A

I6=?
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Examples 2-7, 2-8, 2-9

Example 2-7: Find I.

Soln.: I = 15 A 5 A

A

B

I=?

10 A

Example 2-9:

Is Node A = Node B?
Is Iy = 0?
Is VAB = 0?

A BIy=?

Wire
Soln.:

Node A = Node B.
Iy cannot be determined here.
VAB = 0.

Example 2-8: Find I.

5 A

A B

C I=?

10 A

Soln.:
Invalid circuit because KCL is 
violated at Node A (5 A  10 A).
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2.2.2 Kirchhoff's Voltage Law

Kirchhoff's Voltage Law (KVL):

At any instant of time, the algebraic 
sum of the branch voltages around 
a loop of a circuit is equal to zero, 
i.e., 𝑉𝑖 = 0.

Example 2-10:

B
A

C

E

D

+ V2 –

+
V1

– +
V6

–

+
V5

–

+
V4

–

+
V3

– + V7 –L2

L1

Loop 1 (L1, voltage rise is positive, 
voltage drop is negative):

+V1 – V2 – V5 + V7 – V4 = 0

Loop 2 (L2):

+V1 – V2 – V3 – V4 = 0 
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Main Assumption for KVL

𝑑𝐵

𝑑𝑡
= 0  No electromagnetic induction.

Electric field is conservative and hence 𝑉𝑖 = 0.

No change of magnetic field outside circuit elements

𝑉1

𝑉6

𝑉2

𝑉3

𝑉4

++

+
+

+ –

𝑉5

–

–

–

–

–

+

𝐵
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Conservation of Energy and Ground Potential

KVL is a consequence of conservation of energy, with voltage 
being energy per unit charge (V = E/q). An increase in energy 
from A to B is thus identified as a rise in voltage, while a decrease 
in energy is a drop in voltage.

Voltage is a relative quantity, and it is convenient to specify a 
reference node for the whole circuit, usually known as the ground 
node, or simply ground (GND), assigned as 0 V.

Symbols for Ground
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With the introduction of the ground node, KVL can be restated:

The voltage at a node, with reference to ground, is the 
algebraic sum of the branch voltages that constitute a 
path from ground to that node.

Equivalent Statement of KVL

Example 2-11: Find Vx.

+
2 V
–

+
3 V
–

+ 4 V –

– 5 V +

+
6 V
–

–
10 V

+

Soln.:
Consider the two paths from ground to 
Vx.

Path 1:

Vx = +3 V + 2 V – 4 V = 1 V

VX

Path 2:

Vx = +5 V – 10 V + 6 V = 1 V

1

2
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External Ground and Supply Connections

(A) Single Ground Connection. No 
Other External Connections:
IGND = 0 because ground is a dead 
end and there is no return path.

IGND = 0

Circuit

IGND1

Circuit

IGND2 IGND3

IGND1 IGND2 IGND3

IS1

vS1

Circuit

IS2

vS2

(B) Multiple Ground Connections: 
IGND’s are not necessarily zero, but 
total ground current is zero, i.e.,
IGND1 + IGND2 + IGND3 = 0

(C) Multiple Ground and Supply 
Connections:
Total supply current is equal to total 
ground current, i.e.,
IS1 + IS2 = IGND1 + IGND2 + IGND3
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Examples 2-12, 2-13

Example 2-12: Find Vo.

–

Vo

+

–10 V

R2

R1

5 V

Soln.:
Apply KVL to the mesh:

– 5 V – 10 V + Vo = 0 V 

Vo = 15 V

Be careful about the signs!

Example 2-13: Find Vo.

+
Vo

–
10 V R15 V

Mesh A

Soln.:
KVL of Mesh A should give Vi = 0,
but

10 V – 5 V = 5 V  0 V
and no solution exists (invalid circuit).

Remark: Voltage sources of unequal 
values cannot be connected in 
parallel.
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2.3 Resistive Network

Resistive network: consists of only resistors, voltage sources and 
current sources.

N. B. A network is a more complicated circuit; and network is 
usually interchangeable with circuit.

Example 2-14:

3 nodes, 4 elements

Examples of resistive 1-port network:

+

V

–

i

+

V

–

i
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2.3.1 Resistors in Series

Consider connecting two resistors in series:

KCL mandates
IR1 = IR2 = I

KVL gives
Vs = VR1 + VR2

= IR1 + IR2 (Ohm’s law)
= I(R1+R2)

Hence, the equivalent resistance Req is
Req = R1 + R2

In general, for n resistors connected in series:
Req = R1 + R2 + … + Rn

= 

For resistors in Series: 1) The current is the same.

2) The order of connection is immaterial.

+
VR1

–

+
VR2

–

Vs

I

R2

R1

n
k 1 kR



Resistors in Parallel

Consider connecting two resistors in parallel:

KVL mandates that
Vs = VR1 = VR2

KCL gives
I = IR1 + IR2

IR2

Vs

I

R2R1

IR1

s s

1 2

V V

R R
  (Ohm’s law)

s

1 2

1 1
V

R R

 
  

 

1 2

1 1

R R
 

eq

1

R


In general, for n resistors connected in parallel:

For resistors in parallel: 1) The voltage is the same.

2) The order of connection is immaterial.

n

k 1
1 2 n k

1 1 1 1
...

R R R R

     
eq

1

R

2-23
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For R1 and R2 connected in parallel, Req is written as Req = R1||R2, 
and

1 2

1 1

R R
 

eq

1

R


1 2R ||ReqR 1 2

1 2

R R

R R




2 and 3 Resistors in Parallel

For 3 resistors in parallel, apply the formula twice and

1 2 3R ||R ||ReqR
1 2

3

1 2

R R
||R

R R




product

sum

 
 
 

1 2

1 2

1 2

1 2

R R

3R R

R R

3R R

R

R








1 2 3

1 2 1 3 2 3

R R R

R R R R R R


 

Note that R1||R2||R3 
1 2 3

1 2 3

R R R

R R R 
(Wrong dimension!)

(Too complicated 
to be useful!)
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Resistance and Conductance

In dealing with resistors connected in parallel, conductance G (= 
1/R) may be used to simplify analysis:

I2

Vs

I

G2G1

I1 I2

G3

1 2 3I I I  I

1 s 2 s 3 sG V G V G V  

s 1 2 3V (G G G )  

eqG 1 2 3G G G  

Example 2-15: Find Geq and Req.

Geq

11

50



Geq = 0.02 + 0.02
= 0.04 –1 (or 0.04 S, S = Siemens)

Req 50

Req = 50||50
= 25 

11

50

 50



2-26

Example 2-17: Find Req.

30 

30 

50  60 

Req

Examples 2-16, 2-17

30 60

30 60






20 

20 

30 

50 

Req

30 ||60  30 20  50 

50 50 

Req

25 

50 ||50  
eqR

Example 2-16: Find Geq.

11

20



11

30



Geq

20

30

Req Req

50
Geq

11

50



Geq = 0.02 S
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2.3.2 Voltage Divider

A voltage divider circuit can be formed from using two resistors:

Vs

I

R1

+VR1–

R2

+

Vo

–

Vs = VR1 + Vo

= IR1+IR2

o

s

V

V

By choosing appropriate R1 and R2, we can obtain any voltage Vo

between 0 and Vs.

Vs

I

R1

R2

+

Vo

–

I

I”

I’

N

However, it should be noted that 
this Vo cannot be used to drive 
any load. For the circuit to the 
right, if the network N takes in a 
current I”, then I’ = I – I”  I, 
and the above Vo /Vs relation will 
not hold.

2

1 2

R

R R



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Current Divider

A current divider is the dual of the voltage divider:

IR2

Is R2R1

IR1Is = IR1 + IR2

o o

1 2

V V

R R
  o

1 2

V

R ||R


R1

s

I

I
o 1

o 1 2

V / R

V / (R ||R )


2

1 2

R

R R




+

Vo

–

Note that IR1 is proportional to R2, 
and IR2 is proportional to R1. Also be 
reminded that the smaller resistor 
draws the larger current.

http://www.instockwireless.com/power_divider_pd1040.htm
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Example 2-18

Example 2-18: Find I1, I2, I3, VA and VB.

I3

8 A 4 

I1
I2

4 A

2 

2 

VA

VB

Soln.:

2
(8A 4A)

2 4
 



1I 4A 

2I 4A

3I

3I 2 16V   

AV

BV
212A I 8A  

BV ( 4A 2 ) 24V     

Current divider
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Examples 2-19, 2-20

Example 2-19: Find IR, V1 and V2.

–
V2

+

IR

4 V

2 

2 A

+
V1

–
Soln.:

IR = 2 A
V2 = –IR2  = –4 V
4 V + V1 = –V2 = 4 V
V1 = 0 V !

Example 2-20: Find VA, I1 and I2.

I1

4 V 2 A

VA

Soln.:
I1 = 4 V/2  = 2 A
I2 = I1 – 2 A = 0 A
VA = 0 – 4 = –4 V

2 

I2

0 V
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Examples 2-21, 2-22

Example 2-21: Find IR1, VA

and VB.

4 V2 A

4 

VB

VA
IR1

Soln.:
IR1 = 2 A
VA = 0 – 24 = –8 V
VB = VA – 4 = –8 – 4

= –12 V

Example 2-22: Find IR2, VC

and VD.

4 V2 A

4 VC

VD
IR2

Soln.:
IR2 = 2 A
VD = 0 + 4 = 4 V
VC = VD + 24 = 4 + 8

= 12 V
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2.4.1 Nodal Analysis

A circuit can be very complicated, and one needs a systematic 
way to analyze it  use nodal analysis.

rear windshield 
defrosting circuit
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Procedure of Nodal Analysis

To solve a complicated circuit, nodal analysis (related to nodes) 
can be employed. The procedure is as following.

(1) For a circuit with n nodes, one node is assigned the ground 
(reference) node with node voltage of 0 V. 

(2) Write (n–1) KCL equations at the (n–1) non-ground nodes. 
Alternatively, any (n–1) nodes can be chosen.

(3) For the (n–1) equations in (n–1) unknowns, we may solve 
them by the Gaussian elimination method.

After all node voltages are obtained, all branch currents can then 
be computed. In this course, we deal with at most 2 equations 
with 2 unknowns, and simple elimination method is adequate. 
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Example 2-23

Example 2-23 (circuit with voltage source): Solve for Va and I1.

2 A

I1

4 Va

4 

I2

4 V

Soln.:Write KCL equation at Va.

@Va:
a aV V 4

2
4 4


 


a2V 4 8 

Ans.:
aV 6V, 1I 1.5V
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Example 2-24

Example 2-24: Solve for all node voltages and branch currents.

–1 A2 A 1 

Vb

I3

2 Va

3 

I2 I1

Soln.:Write KCL equations at Va and Vb first.

@Va:
a a bV V V

2
3 2


 

@Vb: a b bV V V
1

2 1


 


a b5V 3V 12 


a bV 3V 2 

(1)

(2)

a4V 10V(1) – (2):

Ans.:
b

1
V V,

6
a

1
V 2 V,

2
 1

1
I A,

6
 2

7
I A,

6
 3

5
I A.

6

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Example 2-25

Example 2-25: Solve for Io.

–4 V6 V

VbVa

1 k
I2

I1 2 k 12 V 2 k

2 k

I3

Io

Ix

Soln.: The current Ix through the 12 V voltage source cannot be 
expressed in terms of Va and Vb, but note that

I1 = I2 + Ix = I2 + Io + I3

Hence, Va and Vb can be "considered" as a supernode, and

a a a a6 V V V 12 V 12 ( 4)

2k 1k 2k 2k

    
  


a a a a6 V 2V V 12 V 16     

 a

22
V V

5


 and a

o

V 12
I 3.8mA

2k


 

Supernode
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Example 2-26

Example 2-26 (circuit with dependent source): Solve for Va and I1.

10 V

I1 2 

3 A

1 Va

2I1

Soln.:Write KCL at Node A gives

a a
a

10 V 10 V
3 V 2( )

2 2

 
  

a 1
1

V 2I
I 3

1


 




a a10 V 6 4V 20   

Ans. aV 7.2V, 1I 1.4A
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SPICE Simulations

SPICE stands for Simulation Program with Integrated Circuit 
Emphasis. 

SPICE was developed in 1973 at the University of California, 
Berkeley by Laurence Nagel and his research advisor, Prof. Donald 
Pederson. Nodal analysis is used in the simulations.

SPICE is a very important and powerful circuit-simulation program 
widely used by electrical engineers involved in circuit analysis and 
design. It can simulate electrical circuit behavior and calculate 
node voltages, branch currents, power, and other parameters of a 
circuit. An engineer can study the behavior of circuits without 
having to actually build them. The circuit can consist of resistors, 
capacitors, inductors, operational amplifiers, diodes, transistors, 
semiconductor devices, and other components.

PSPICE is a commercial version of SPICE from Cadence Design 
Systems. You will use it in your labs.

https://en.wikipedia.org/wiki/SPICE



2-40

2.4.2 Mesh Analysis (Optional)

If a circuit with n nodes and b branches can be laid out on a 
plane surface with no crossing of branches (planar graph), then it 
can be shown that there exist sets of b–(n–1) independent KVL 
equations related to loop/mesh currents, and mesh analysis can 
be used. (Loops and meshes are treated the same way.)

(1) Assign loops/meshes and the corresponding loop/mesh 
currents.

(2) For an element Ri that belongs to only 1 loop/mesh with 
current Ij, the voltage drop across Ri is IjRi.

(3) For Ri that belongs to two loops/meshes with currents Ij and 
Ik, special care is needed to determine the voltage drop as 
(IjIk)Ri according to the directions of Ij and Ik.

(4) Solve for the b–n+1 equations.

Note that using loop/mesh analysis always have equal or more 
equations to solve than using nodal analysis.
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Example 2-27 (Optional)

Example 2-27: Solve for Io.

12 V
I2

3 k

I1

3 k

3 V

1 k

2 k

6 k

Io

Mesh A Mesh B

Soln.:

KVL of Mesh A: 12 – 3kI1 – 6k(I1–I2) – 3kI1 = 0 (1)
KVL of Mesh B: 3 + 2kI2 + 6k(I2–I1) + 1kI2 = 0 (2)
(1)  12kI1 – 6kI2 = 12 (3)
(2)  6kI1 – 9kI2 = 3 (4)
(3) – 2(4)  12kI2 = 6  I2 = 0.5 mA
I2 in (3)/6  2kI1 = 2 + 1k0.5  I1 = 1.25 mA
Finally, Io = I1 – I2 = 0.75 mA

Ans.  I1 = 1.25 mA, I2 = 0.5 mA, Io = 0.75 mA
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Example 2-28 (Optional)

Example 2-28: Solve for I.

Soln.:

Loop A is the mesh with the 4 A 
source, but KVL cannot be easily 
applied, nor to the meshes with the 
3 A source. Hence, define Loop B (a 
superloop or supermesh) as shown. 
To facilitate computation, use KCL at 
the nodes to find the unknown 
currents first.

The loop/mesh analysis is not straightforward and is not preferred.

4–I

4 V

2 

5 V
3 A

2  3 

1 

I

Loop A

4 A

Loop B

7–I
3–I

I I2

Loop B: 4 + 1I + 2(I–4) + 3(I–3–4) + 2(I–3) – 5 = 0
 4 + I + 2I – 8 + 3I – 21 + 2I – 6 – 5 = 0
 8I = 36     Ans.  I = 4.5 A

At the branch with 3 A source: I – I2 = 3  I2 = I – 3
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2.4.3 Linearity

A circuit can be considered mathematically as a function, with an 
input and an output. The input is also known as the excitation, 
and the output is known as the response.

input outputCircuit y = f(x)f()x

circuitexcitation response

A circuit satisfies the property of homogeneity iff (if and only if)

f(kx) = kf(x)

y = kf(x)f()kx

The only function that can meet the homogeneity requirement is 
f(x) = mx, i.e., a straight line passing through the Origin.
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Superposition and Linearity

A circuit satisfies the property of superposition iff (if and only if)

f(x1+x2) = f(x1) + f(x2)

y = f(x1) + f(x2)f()x1 + x2

A circuit is linear iff it satisfies both the properties of homogeneity
and superposition, that is

f(ax1+bx2) = af(x1) + bf(x2)

y = af(x1) + bf(x2)f()ax1 + bx2



In this course, we often deal with linear circuits (with important
exceptions, e.g., diodes), and as such, superposition applies.
Therefore, if a linear circuit contains multiple independent sources,
the output voltage and/or the output current can be calculated by
summing the contributions of each source acting alone.

When computing the individual contribution of a source, all other
independent sources are set to zero: a voltage source becomes a
short circuit (Vsi = 0 V) and a current source becomes an open
circuit (Isj = 0 A). Yet, all dependent sources should remain
operative.

Application of Superposition

Vs1

Is4
Vs3

Is2

s1 s2 s3 s4
o o o o oV I V I

I I I I I   

s1 s2 s3 s4
o o o o oV I V I

V V V V V



   



Linear 
Circuit

2-45
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Example 2-29

VB

Vs=6 V

2 

4  2 

2  VA

Example 2-29: Compute VA and VB for Vs = 6 V and Vs = 12 V. 
Comment on the result.

Soln.:

AV
s

4 || 4
V

4 || 4 2



s0.5V

BV A

2
V

2 2



A0.5V

Therefore,

(1) for Vs = 6 V, VA = 3 V, VB = 1.5 V; and
(2) for Vs = 12 V, VA = 6 V, VB = 3 V.

Note that the node voltages are proportional to Vs, observing 
homogeneity.
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Example 2-30

Example 2-30: Compute Vo by using nodal analysis and by using 
superposition.

Vo

Vs1=36 V

4 

2 

3  VA

Soln.:

(1) Nodal analysis:

AKCL at V : A A36 V V
6

3 6


 


A A72 2V 36 V  


AV 12V

and Vo = 4 V

Is2=6 A
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Example 2-30 (cont.)

(2) Superposition:
Vo

4 

2 

3  VA

2
36 8V

3 4 2
  

 s2
o I 0

V


Vs1=36 V

(i) Is2 set to 0:

(ii) Vs1 set to 0:
Io

4 

2 

3  VA

IS2=0  open

VS1=0
 shorts1

o V 0
I



s1
o V 0

V
 2A 2 4V     

oV
s1 s2

o oV 0 I 0
V V 4V 8V 4V

 
     

Finally, add the two contributions together to get

Is2=6 A

Vo

    


3
( 6) 2A

3 6
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Example 2-31

Example 2-31: Compute I1 (superposition with tricky circuitry).

2 

6 V

I1

2 

2 A

4 V2 

Soln.: Note that the parallel combination of 2 ||4 V is in series 
with the 2 A source, and plays no part in determining I1.

1I 1 16V 2A
I I 

6V 2
2A

2 2 2 2


  

     

1.5A 1A 

2.5A
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Example 2-32 (1)

Example 2-32: Use superposition to find I (note the dependent 
source).

10 V

2 

3 A

1 

2I

I

Soln.:
(1) Consider I due to the 10 V source first (= Ia), and remember 

that the dependent source 2I (now 2Ia) remains operative.

10 V

2  1 

2Ia

IaApply KVL to the loop:

10 = 2Ia + Ia + 2Ia

 Ia = 2 A
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Example 2-32 (2)

(2) Next, consider I due to the 3 A source (= Ib), and remember 
that the dependent source 2I (now 2Ib) remains operative.

2 

3 A

1 

2Ib

Ib 3+IbApply KVL to the loop:

2Ib + (3 + Ib) + 2Ib = 0

 Ib = –0.6 A

Hence, the answer is

I = Ia + Ib = 2 – 0.6 = 1.4 A

Checking:

2 

3 A

1 

2I=2.8 V

1.4 A

10 V

7.2 V

4.4 A
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Superposition not applicable to Power 

Power is a square function of voltage and current (P  V2, I2), 
and as it is not a linear function of V and I, it does not obey 
superposition.

Example 2-33: Find the power absorbed by the 3  resistor for 
Vs = 8 V and Vs = 16 V.

Soln.:

(1)  For Vs = 8 V, Io = 2 A, and P3 = 223 = 12 W

(2) For Vs = 16 V, Io = 4 A, and P3 = 423 = 48 W

Note that Vs increases by 2 times, but the power is increased by 4 
times.

Vo

3 

1 

VS

Io
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Chapter 2: Resistive Networks and DC Analysis

2.1 Circuit Terminology

2.2 Circuit Laws

2.2.1  Kirchhoff's Current Law

2.2.2  Kirchhoff's Voltage Law

2.3 Resistive Network

2.3.1  Resistors in Series and in Parallel

2.3.2  Voltage and Current Dividers

2.4 Circuit Analysis 

2.4.1  Nodal Analysis

2.4.2  Loop and Mesh Analysis

2.4.3  Superposition

2.5 Maximum Power Transfer & High-Voltage Transmission

2.6 Equivalence and Source Transformation

2.6.1  Thevenin's and Norton's Theorems 

2.6.2  General Proof
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2.5 Maximum Power Transfer (1)

Let us consider a voltage source Vs with source resistance Rs (= 
output resistance of Vs) driving a load RL:

Vs

Rs

+
Vo

–

Io

LP

2L
s2

s L

R
V

(R R )




L s
o o s

s L s L

R V
V I V

R R R R
  

 

The power dissipated in (or delivered to) RL is

RL
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Maximum Power Transfer (2)

To obtain the maximum power dissipated in RL, differentiate PL

w.r.t. (with respect to) RL and set the result to zero:

L

L

dP
0

dR


2
2 s L L s L

s 4

s L

(R R ) R 2 (R R )
V 0

(R R )

    
 



gives
2 2 2

s s L L s L LR 2R R R 2R R 2R 0    


L sR R

The maximum power PL(max) that can be obtained from a source 
Vs is when the load resistance RL is matched to the source 
resistance Rs (RL = Rs), and

L(max)P
2

2s s
s2

s s s

R 1 V
V

(R R ) 4 R
 





2-56

High-Voltage Transmission

Let us consider a different objective: to deliver a given amount of 
power from the power plant to the substation while minimizing 
the power loss in the long distance transmission line.

Vs

RLine

The power delivered to RLoad is 

+
VL

–

IL

RLoad

RLine RLine

Power
Plant Substation

Long Distance Transmission Line

RLine RLine RLine

𝑃𝐿𝑜𝑎𝑑 = 𝑉𝐿𝐼𝐿 = Given

The power loss in the transmission line is

𝑃𝐿𝑜𝑠𝑠 = 𝐼𝐿
2෍𝑅𝐿𝑖𝑛𝑒 =

𝑃𝐿𝑜𝑎𝑑
𝑉𝐿

2

෍𝑅𝐿𝑖𝑛𝑒 ∝
1

𝑉𝐿
2

High voltage  lower transmission loss. The highest transmission 
voltage now exceeds 1 MV, with PLoad rated over 10 GW in China.

https://en.wikipedia.org/wiki/Ultra-high-voltage_electricity_transmission_in_China

https://en.wikipedia.org/wiki/Ultra-high-voltage_electricity_transmission_in_China
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Chapter 2: Resistive Networks and DC Analysis

2.1 Circuit Terminology

2.2 Circuit Laws

2.2.1  Kirchhoff's Current Law

2.2.2  Kirchhoff's Voltage Law

2.3 Resistive Network

2.3.1  Resistors in Series and in Parallel

2.3.2  Voltage and Current Dividers

2.4 Circuit Analysis 

2.4.1  Nodal Analysis

2.4.2  Loop and Mesh Analysis

2.4.3  Superposition

2.5 Maximum Power Transfer & High-Voltage Transmission

2.6 Equivalence and Source Transformation

2.6.1  Thevenin's and Norton's Theorems 

2.6.2  General Proof
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2.6 Equivalence

Two resistive 1-port networks are equivalent if and only if they 
have the same current-voltage (I-V) characteristics across their 
respective terminal-pairs for ALL loads (including sources).

Network A Network B

Load L

+
VA

–

iA

Load L

+
VB

–

iB

If IA = IB and VA = VB for all load L, then network A and Network 
B are equivalent.

Hence, a complex network (Network A) can be replaced by a 
simple equivalent network (Network B), and the analysis can be 
simplified.

Power supply
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Example 2-34

Example 2-34: Is Network A equivalent to Network B?

+

Vo

–

R=2 

2 

4 V

Io

Network A

For R = 2 , the load voltage and load current for both 
Network A and Network B are Vo = 2 V and Io = 1 A. However, 
for R = 6 , Network A gives: Vo = 3 V
and Io = 0.5 A

but Network B gives: Vo = 4 V
and Io = 0.75 A

+

Vo

–

R=2 

6 

8 V

Io

Network B

Soln.:

Therefore, Network A is not equivalent to Network B.
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2.6.1 Thevenin's Theorem

Thevenin's Theorem:

A linear circuit with a terminal-pair (N) can be replaced by a 
series combination of an ideal voltage source Voc and a 
resistor Rt, where Voc is the open-circuit voltage of N and Rt is 
the equivalent resistance looking into N with all independent 
sources set to zero. All dependent sources should remain 
operative.

Network
N

1-port

Voc

Rt

A

B

A

B

1. Voc is also known as Thevenin's equivalent source.
2. Rt is Thevenin's resistance, or the output resistance of N.

Thevenin's equivalent 
circuit of N
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Computing Voc and Rt

Figuratively, we have a complicated circuit C that can be divided 
into two parts, a linear network N and a load L.

Circuit
C

Network
N

1-port

A

B

Load
L



Linear and non-linear 
components

Linear 
components

Thevenin's theorem states that:

Network
N

A

B

+
Voc

–
Voc

Rt

N with 
sources=0

A

B Rt

(Dependent sources 
remain operative)

Linear and non-linear 
components
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Example 2-35

Example 2-35: Is Network A equivalent to Network B?

+

Vo

–

R

4 

8 V

Io

Network B

4 

+

Vo

–

R

2 

4 V

Io

Network A

Soln.: Construct Thevenin's equivalent circuit of Network B: 

4 

8 V 4 
oc

4
V 8 4V

4 4



  




4 

4 
tR 4 || 4 2  

Now, Network B is modeled as Voc = 4 V in series with Rt = 2 , 
and is the same as Network A; hence, they are equivalent.
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Example 2-35 (cont.)

An alternative way to demonstrate equivalence is to consider the 
load with R = 0  and R = ∞ .

R = 0 
2 

4 V

Io=2 A

+
Vo=0 V
–

R = ∞ 

4 

8 V 4 

Io=2 A

+
Vo=0 V
–BA

2 

4 V

Io=0 A

+
Vo=4 V
–

4 

8 V 4 

Io=0 A

+
Vo=4 V
–A B

Both give the same Io-Vo

plot for all R:

Io

Vo
0 4 V

2 A
R=0 

R=∞ 
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Example 2-36

Example 2-36: Find Voc and Rt of the following circuit.

4 

36 V

3 

6 A

B

A

Soln.:
4 

36 V

3 

6 A

6 A +
Voc

–

0 A

Voc = 36 – 63 + 04 = 18 V

4 3 

B

A

Rt

36 V0  shorted
6 A0  open
gives Rt = 7 

18 V

7  A

B


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Example 2-37

Example 2-37: Is Network A equivalent to Network B?

8 V 2 

Network A

8 V

Network B

Soln.: For Thevenin's equivalent circuit of Network A, clearly, Voc

= 8 V and Rt = 0 . Hence, Network A is equivalent to Network 
B.

2 

Rt=0 

Note that any resistors in parallel with an ideal voltage source can 
be neglected from calculating other circuit variables. 

shorted
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Example 2-38

Example 2-38: Find the output voltage Vo when RL changes from 
1 to 3 k.

+
Voc=4 V
–

Network A Network A 1 k
+
Vo=1 V
–

Network A 3 k
+
Vo=? V
–

Soln.:

Voc

Rt

+
Voc=4 V
–

4 V

Rt

+
Vo=1 V
–

1 k

Clearly,
Rt = 3 k

4 V 3 k

3 k

+
Vo=2 V
–

Given
Voc = 4 V

Ans:
Vo = 2 V
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Norton's Theorem

Norton's Theorem:

A linear circuit with a terminal-pair (N) can be replaced by a 
parallel combination of an ideal current source Isc and a 
resistor Rt, where Isc is the short-circuit current of N and Rt is 
the equivalent resistance looking into N with all independent 
sources set to zero. All dependent sources should remain 
operative.

Network
N

1-port

Isc
Rt

A

B

A

B

Norton's equivalent 
circuit of NPoints to note:

(1) The equivalent resistance Rt is the same for both Thevenin's 
and Norton's equivalent circuits.

(2) It is easy to show that Voc = IscRt.



Linear 
components

Linear and non-linear 
components
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Computing Isc and Rt

Figuratively, we have a complicated circuit C that can be divided 
into two parts, a linear network N and a load L.

Circuit
C

Network
N

1-port

A

B

Load
L



Norton's theorem states that:

Network
N

A

B

IscIsc

Rt

N with 
sources=0

A

B Rt

(Dependent sources 
remain operative)

Linear and non-linear 
components

(Note the direction 
of Isc)
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Example 2-39

Example 2-39: Find Isc and Rt of the circuit in Example 2-36.

4 

36 V

3 

6 A

B

A

Soln.:
4 

36 V

3 

6 A Isc

7 

A

B

VC

C C36 V V
6

3 4


 KCL at VC:

C C144 4V 72 3V  

C

72
V V

7


Recall that Rt = 7 , Norton’s 
equivalent is therefore

 C
sc

V 18
I A

4 7
 

18
A

7







2-70

Example 2-40

Example 2-40: Is Network A equivalent to Network B?

8 A

2 

Network A

8 A

Network B

Soln.: For Norton's equivalent circuit of Network A, clearly, Isc = 8 
A and Rt = ∞ . Hence, Network A is equivalent to Network B.

Rt=∞ 

Note that any resistors in series with an ideal current source can 
be neglected from calculating other circuit variables. 

open
2 
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Example 2-41

Example 2-41: Both Vs1 and Is2 are unknown. If R = 0 , then IR

= 4 A. Find IR when R = 4 .

Soln.: Let R be the load, and find Norton's equivalent circuit of the 
remaining circuit first. 

2 

Vs1

4 

A

Is2
Isc

For R = 0 , IR = 4 A = Isc.

2 4 

A

IR

Rt

Rt = 4 

BB

4 A 4 

B

A

4 

For R = 4 , IR = 2 A.

2 

Vs1

4 

R

B

A

Is2

IR

2 

Vs1

4  R

B

A

Is2 IR
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Transformation Between
Thevenin’s and Norton’s  Equivalent Circuits

A linear network can be described by either its Thevenin's or 
Norton's equivalent circuit. The validity of one will prove the 
other. They can also be transformed (source transformation) into 
one another.

From Thevenin's equivalent, find Norton’s equivalent:

Voc

Rt

A

B

Rt

Voc

oc
sc

t

V
I

R


Rt Rt

From Norton's equivalent, find Thevenin’s equivalent:

Isc

A

B

Rt Isc Rt oc sc tV I R







Rt

Rt

short

open



2-73

Equivalent for External Components Only

Source transformation can ONLY be employed to compute 
voltages and currents EXTERNAL TO Thevenin's or Norton's 
equivalent circuits.

Example 2-42: Demonstrate that source transformation can be 
used to compute Io but not I3.

9 A 6 3 

I3 Io Perform source transformation:

6 

3 

Io

27 V

??

Soln.: From current division, 
we have

I3 = 6 A

Io = 3 A

Clearly,

Io = 3 A

and I3 is not the same as before. 
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Example 2-43 (1)

Example 2-43: Use source transformation to solve for Va.

2 A 4 

Va

4 V

Soln.: One way is to obtain the Thevenin's equivalent circuit of
2 A||4 :

4 

8 V

4 

I

4 

4 V

VaI

8 4
0.5A

4 4


 



aV 8 4 0.5 6V   
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Example 2-43 (2)

Example 2-43: Use source transformation to solve for Va.

2 A 4 

Va

4 V

Soln.: A simpler way is to obtain the Norton's equivalent circuit 
of 4 V + 4  on the right:

4 

2 A 4 

Va

4  1 A

Va = (2 A + 1 A)(4 ||4 )
= 3 A × 2 
= 6 V
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Example 2-44

Example 2-44: Use source transformation to solve for I.

40 V

20  5 A

30 

8 

12 

I

Soln.: Obtain Norton's equivalent for 40 V + 20  and 
Thevenin's equivalent for 5A||8  first, and then 
Thevenin's equivalent for 2 A||20 ||30 :

2 A

40 V

30 
12 

I

20 

8  40 V

12 

8 

24 V

12 

16V
I 0.5A

32


  


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Example 2-45 (1)

Example 2-45: Thevenin's equivalent circuit
(a) Find the open circuit voltage Voc at the terminal pair a-b.
(b) Show that the Thevenin's resistance Rt at a-b is 2 k.
(c) Find the short circuit current Isc at the terminal-pair a-b.
(d) If the load is changed from 1 k to 2 k, find the new Io.

RL=1 k

4 mA

12 V

a

1 k

1 k

2 k

1 k

2 mA6 V

b

Io

– Vo +
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Example 2-45 (2)

Soln.: (a) A formal solution involves writing KCL equations to 
solve. However, good observations may help to solve this 
problem faster. Here, make use of the currents of the 
current sources to find voltage drops, and work out the 
total voltage drop from Va to Vb.

4 mA

12 V

a

1 k

1 k

2 k

1 k

2 mA6 V

b
– Voc +

–
2 V
+

6 mA
+

6 V
–

Note that

Voc = Va – Vb

and Va = Vb + 6 V +12 V + 2 V

Hence,

Voc = 20 V
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Example 2-45 (3)

(b) For computing Rt, set all sources to zero (voltage sources 
shorted and current sources open).

a

1 k

1 k

2 k

1 k

b

Rt

a

b
1 k

1 k

Rt

Clearly, Rt = 2 k.

(c) Isc = Voc/Rt = 20 V/2 k = 10 mA.

(d) For RL = 2 k,

Io = Voc/(Rt + RL) = 20 V/(2 k + 2 k) = 5 mA.

1 k||2 k
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Example 2-46 (1)

Example 2-46: Find Thevenin's equivalent circuit at a-b 
(equivalent circuit with dependent source).

10 V

2 

3 A 2I

a bI

Soln.: (1) To find Voc at a-b, note that

10 V

2 

3 A 2I

a bI=–3 AI = –3 A

Va = 10 – (–3)2 = 16 V

Vb = 2(–3) = –6 V

Voc = Va – Vb = 22 V
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Example 2-46 (2)

(2) To find Rt is a little bit tricky (but can be done directly). We 
may find Isc first, and Rt = Voc/Isc.

10 V

2 

3 A 2I

a bI Isc

Va = Vb = 10 – 2I = 2I

 I = 2.5 A

Now, the KVL equation relating Va is

Then, the KCL equation at Va is

I + 3 = Isc

 Isc = 5.5 A

 Rt = Voc/Isc = 22 V/5.5 A = 4 
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Example 2-46 (3)

(3) To find Rt of a network with one or more dependent sources. 

IT

VT and IT can be set to 1 V and 1 A to 
simplify the calculation.

Network
with 

dependent 
sources

A

B

Rt

VT

VT

Network
with 

dependent 
sources

A

B

Rt

IT

(i) We may apply a test voltage VT

across A-B. Find the current IT

flows into the network at node A. 
Then, Rt is given by Rt = VT/IT.

(ii) Alternatively, we may apply a test 
current IT flows into node A. Find 
the voltage VT across terminals A-
B. Again, Rt is given by Rt = VT/IT.
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Example 2-46 (4)

Then, from the KVL equation at 
the outer loop

2I + Vab + 2I = 0

 Vab = –4I = 4 V

 Rt = Vab/1 A = 4 V/1 A = 4 

2  1 A

2I

a bI

Now, apply 1 A across node a-b.

Obviously, I = –1 A
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2.6.2 General Proof of Thevenin's Theorem

Linear Network
Req

A

B

Consider a resistive linear network having M independent voltage 
sources, N independent current sources, and a number of 
dependent voltage and current sources.

Single out a port of the network and connect an external current 
source to it.

Vm VjIn IkRi
Iext

Then by superposition, we can find VAB by summing the 
contributions of the independent sources taken one at a time 
including Iext. All dependent sources must remain operative:

𝑉𝐴𝐵 = ෍

𝑚=1

𝑀

𝐴𝑚 𝑉𝑚 +෍

𝑛=1

𝑁

𝐵𝑛 𝐼𝑛 + 𝐼𝑒𝑥𝑡𝑅𝑒𝑞
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General Proof of Thevenin's Theorem (Cont.)

𝑉𝐴𝐵 = ෍

𝑚=1

𝑀

𝐴𝑚 𝑉𝑚 +෍

𝑛=1

𝑁

𝐵𝑛 𝐼𝑛

𝑉𝑂𝐶

+ 𝐼𝑒𝑥𝑡𝑅𝑒𝑞

Notice that the first two terms constitute the open-circuit voltage, 
because this is the voltage when Iext is set to zero. Req is the 
equivalent resistance looking into the port. So the I-V 
characteristic of the Linear Network is now reduced to

𝑉𝐴𝐵 = 𝑉𝑂𝐶 + 𝐼𝑒𝑥𝑡𝑅𝑒𝑞

But this is identical to the I-V characteristic of its Thevenin’s
circuit shown on the right.

Linear
Network

A

B

Iext IextVoc

Req
A

BReq

This is true for all values of Iext and VAB. Hence the two circuits 
are equivalent.


